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A~act-Without the aid of the large Prandtl number adoption, the Graetz problem with the effect of 
natural convection in a uniformly heated horizontal tube is studied numerically by a relatively novel 
vorticity-velocity method. Variations in local friction factor and Nusselt number with Rayleigh number 
are shown for Prandtl numbers, Pr = $2 and 0.7. Comparing with the available experimental data for 
water, the present results for Pr = 5 show a better agreement than those with PP + co. The asymptotic 
solutions for z + co are further compared against the existing analytical and experimental data. A reason- 

ably good agreement is observed. 

INTRODUCTION 

BECAUSE of practical interest, the combined free and 
forced laminar convection in tubes had been studied 
by many investigators. Experimental data are rather 
abundant in both horizontal and inclined tubes. In 
view of the various working fluids used in the litera- 
ture, glycerol [l], the mixture of water and glycerol 
[1, 21, and ethylene glycol [3-51 are classified as large 
Prandtl number fluids; and, air [6-lo], and nitrogen 
[6] small Prandtl number fluids, while the Prandtl 
numbers of water [l-4, IO-191 and ethyl alcohol [I, 
21 are moderate. Some of these studies include data 
for entrance flow [l, 2, 5, 6, 9, 11-191. 

Numerous analytical solutions for this problem 
were proposed first in the fully developed flow. Gen- 
erally, the uniform wall heat flux boundary condition 
with either a zero (‘ZC’) [ZO] or infinite (‘IC’) 121, 
221 value of the peripheral thermal conductivity was 
utilized. However, the fully developed flow can only 
be established in a long tube. Although the flow and 
heat transfer characteristics of entrance flow with sig- 
nificant natural convection effects are practically 
important, the numerical data are available only in 
limited cases due to the complexities arising from the 
three-dimensionality of the flow. A large Prandtl num- 
ber assumption was frequently used [4, 23-271 to 
avoid the difficulty, but the results are obviously 

t Author to whom correspondence should be addressed. 

unsuitable for both moderate and small Prandtl num- 
ber fluids, such as water and gases. The ~rturbation 
method [28] was known to be practical only in the 
regime where the natural convection effect is 
sufliciently small. The numerical solutions solving 
three-dimensional elliptic governing equations [29] 
needed prohibitively large computer time and thus 
were unsuitable for engineering applications. By a 
slight modification to the primitive variable cal- 
culation described by Patankar and Spalding 2301, the 
buoyancy effects in the entrance region of horizontal 
rectangular channels were studied by Abou-Ellail and 
Morcos [31]. The available methods for solving the 
primitive variable formulation need extra pro- 
gramming and storage effort (e.g. the use of staggered 
grids) and underrelaxation of the pressure-correction 
equation as discussed in Farouk and Fusegi 1321. 

The formulation of the Navier-Stokes equations 
employing the vorticity-velocity components has been 
used for two-dimensional hydrodynamic stability 
problems [33, 341. References [35, 361 have also used 
the vorticity-velocity method for predicting three- 
dimensional flows along vertical and horizontal 
square ducts, respectively. In the present study the 
vorticity-vefocity formulation of the Navier-Stokes 
equations and the corresponding numerical scheme 
are extended to the problem in a circular tube by using 
cylindrical coordinates, and the flow and heat transfer 
characteristics of the thermal entrance flow in a hori- 
zontal tube can be further investigated for moderate 
and small Prandtl number fluids. 
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NOMENCLATURE 

u, d tube radius and diameter cri- fully developed axial velocity before 
C constant, (~‘/~~~)~~~/~Z thermal entrance 
Gr Grashof number, g,Nca3jv2 It‘f dimensionless quantity for W, 
Gr+ Grashof number used by Patankar w’, WI axial velocity in the thermal entrance 

et al. [37], @Q’u’/k$ region, IV,+ W and its dimensionless 
.f’ friction coefficient, 2?,/(pW’) quantity, ~,+4Ra II’. 

; 
gravitational acceleration 
average heat transfer coefficient 

k thermal conductivity 
Greek symbols 

M,N number of divisions in the r- and $- ; 

thermal diffusivity 

directions, respectively 
coefficient of thermal expansion 

I: 
NU local Nusselt number, id/k 

prescribed error defined in 

P, P, pressure deviation and pressure for 
equation (18) 

R 
fully developed laminar flow before 

dimensionless temperature difference. 

thermal entrance, respectively 
V- T*)~~~ 

@, characteristic temperature. y,a/k 
P dimensionless quantity for P %, 8, 
Pe Peclet number, Pr Re 

dimensionless bulk and average wall 

Pr Prandtl number, v/r 
temperature, respectively 

F viscosity 
Q’ rate of heat transfer per unit axial 1’ 

length used by Patankar et al. [37] 
kinematic viscosity 

5 
uniform heat flux at wall 

axial-direction vorticity defined in 
9; equation (8) 
R, @, 2 cylindrical coordinates P 
r, 4, a dimensionless cylindrical coordinates 

density 
5 shear stress. 

Ra Rayleigh number, Pr Gr 
Ra*. R& Rayleigh number based on bulk 

telllpe~ture difference and that 
Subscripts 

evaluated at film temperature used 
C characteristic quantity 

by Morcos and Be&es [3], 
fm value evaluated at fluid film 

gfi(Lr’W- Th)d3/w 
temperature (i”, $ Tb)/2 

Reynolds number, #“d/v : 
value at wall 

Re 
Re Ra, parameter used in refs. [S, 221, 

condition for pure forced convection. 

(~d~v)[trg(r’TiaZ)uj/val 

T, 7-o focal temperature and uniform fluid Su~rscript 

temperature at entrance, respectively average value. 

U, V, W velocity components in the R-, 4-, Z- 
directions due to buoyancy effect Other symbol 

u. c, M’ dimensionless quantities for U, V V r.4 Laplacian operator, 
and W ~2/~r’+(l~r)~~rirf~l~~“)~2~c?~‘. 

THEORETICAL ANALYSIS p = P/(pU,v/a). (1 = (T- T”)iO, 

Consider a steady, hydrodynamically fully devel- Gr = g@,a’/v’, Pr = vlr 

oped laminar tlovv in a horizontal circular tube, the Re = mf(2a)/v, Pe = Pr RP 

tube wall being heated with a uniform heat flux at UC = Gr v/a, & = q,&k (11 

Z > 0. The physical configuration is shown in Fig. I. 
The well-known classical Graetz problem is extended 

the governing equations for continuity, momentum 

by including the natural convection effect by using 
and energy can be written as 

the Boussinesq approximation. Neglecting the vis- 
_\ 

cous dissipation and compression work and intro- 
0; + 1 au + $z7: I= 0 

r a# (2) 

ducing the Following dimensionless variables and par- 
ameters : 

r = R/a, z = X/(2a Pe) 
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au v au au u-+f_++++w- i au 
ar r a$ r az 

+-_w- 
4Pr f az 

= 2 g+ v&w (5) ( > 
V,2Wf = c (6) 

where wr = 2(1 -r’). Without considering the solu- 
tion near the vicinity of Z = 0 [7, 23-26, 31, 351, 
the axial viscous and diffusion terms are neglected. 
Following the assumption made in ref. [36], the axial 
pressure gradient retained in the equation is inde- 
pendent of r and 4. In the present numerical com- 
putation, the value of ap/i3z is adjusted to fulfill the 
global continuity condition at each cross-section. It 
is noted that the terms on the left-hand side of the 
momentum equations (3)-(5) can be neglected if the 
large Prandtl number assumption is applied. Fur- 
thermore, equation (5) yields a trivial solution, w = 0 
and ap/az = 0 everywhere in view of the fact that 
W = 0. Hence the continuity equation (2) is reduced to 
the two-dimensional form and the resultant governing 
equations (3)-(7) will be the same as those in refs. [4, 
241. 

Without the aid of the large Prandtl number 
assumption, the vorticity-velocity formulation of the 
governing equations in a tube and its numerical 
scheme are developed as follows. By introducing the 
vorticity in the axial direction 

the governing equations (2)-(4) can be reduced as 
follows : 

(9) 

(10) 

u~+~$+w~+~~+~$+t~ 

aw au aw au 

(11) 

The pressure terms in equations (3) and (4) are elim- 
inated by a cross-differentiation to obtain the vorticity 

transport equation (11). Equations (9) and (10) can 
be derived by differentiating the definition of vorticity 
(8) with respect to r and 4, respectively, and using the 
continuity equation (2). Equations (9) and (10) are 
used for solving the cross-sectional velocity com- 
ponents u and v. Because of symmetry, the boundary 
and initial conditions are stated as follows : 

u=v=w=o and &I/& = 1 at r = 1 

v = au/(&$) = aw/(r&$) = 5 = ae/(d4) = 0 

along symmetry plane, r$ = 0 and rr 

u = v = w = 5 = 0 = 0 at entrance, z = 0. (12) 

It is noted that equations (2)-( 11) and boundary con- 
ditions (12) are singular at r = 0. To avoid this diffi- 
culty in computation, Cartesian coordinates are used 
to formulate the equations at this point. Accordingly, 
the horizontal velocity, the vorticity and horizontal 
gradients of vertical velocity, axial velocity and tem- 
peratures are zero at r = 0. 

Of practical interest are the computations of the 
local friction coefficient f Re and local Nusselt num- 
ber Nu from the determined developing velocity and 
temperature fields along the channel axis z. Following 
the usual definitions, the expressions for f Re and Nu 
can be written based on the overall force balance for 
an axial length dZ and the temperature gradient at 
the wall. The results are expressed as 

(f Re),, = 27,/(pI?:)(2ap’,/v) = 16 = -2C (13) 

fRei(fRe), = i +(apjaz)i(ap,/az) 

= l+Raf,(z)/2 (14) 

(Nu), = li(2a)/kf = 2/(& -Q,,) (15) 

where subscript 0 denotes the quantity for pure forced 
convection 

fdz)[= -(ap/az)i(4Pe2)1 

is the pressure deviation due to secondary flow gen- 
erated by the axial momentum. If the large Prandtl 
number assumption is invoked, the mean axial velo- 
city is kept practically unchanged from that of the 
pure forced convection [4, 23-261. Thus, w will be 
identically zero and w’ = wr as shown in refs. [4, 241. 

The Nusselt number may be also obtained by con- 
sidering an overall energy balance for the axial length 
dZ as 

(Nu)~ = li 
ss 

’ (ae/az)wrdrd~/[2A(B,-e,)]. (16) 
0 0 

Although the mean value of (Nu), and (Nu)~ was 
taken as the final local Nusselt number presented in 
ref. [24], only the value of (Nu) 1 is used in the present 
study due to a better accuracy as shown in the ana- 
lytical work by Patankar et al. [37] and experimental 
work by Morcos and Bergles [3]. 
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NUMERICAL METHOD OF SOLUTION 

For given values of Ra and Pr, the numerical 
method of solution for unknown u; z’, M‘, [ and 0 in 
equations (5)-( 11) satisfying boundary condition (12) 
is briefly described below. 

(1) The initial values for velocity components U. L’. 
\c’ and the temperature difference 0 are assigned zero 
at 2 < 0. Consequently, < = 0 at -7 < 0 results from 
equation (8). 

(2) The values of clzl/& and ;ir/i~ in equation (11) 

are calculated by using a two-point backward differ- 
ence formula. With the known values of U. 1’. )I’, 

M’,, 8, - (?~/&)/(4Pe’) and its cross-sectional spatial 
derivatives computed by a central difference formula, 
the new values of )I‘, 0 and c at the interior points of 
the next axial position are obtained from equations 
(5). (7) and (1 l), respectively, by the Du Fort-Frankel 
method [4, 261. 

(3) Check if the mean axial velocity due to the 
buoyancy effect G is equal to zero. Otherwise, adjust the 
value of the pressure term ,f,(z) = -(8p/az)/(4Pe’) 
in equation (5) to meet the requirement that M, = 0. 
Thus the values of the local f Re in equation (14) at 
this axial position can be determined. 

(4) By applying boundary conditions r?O/& = 1 
and Vf,,&l = 0 at the wall, the temperature along the 
tube wall can be computed by iteration after the tem- 
pcratures in the interior points are found. Then the 
Nussclt number (Nu), is computed from equation 

(15). 
(5) The values of d%/(rSc#dz), c7’w/cirdz, au/(d), 

&/(d$), ?</ir and i?[/(r@) are calculated from the 
results obtained in step (2) by using the backward 
difference formula in the axial direction and a central 
difference formula in the transverse direction. The 

elliptic equations (9) and (IO) are solved for u and z’ 
by an iteration process. During the iteration process, 
the values of vorticity on the boundary are evaluated 
simultaneously with u and 2’ in the interior region as 

It is noted that equation (17) is obtained by dis- 
cretizing equation (8) into finite-difference form at the 
point (M+ l/2& Initially, the boundary vorticity at 
the previous axial section was used to compute the 
current interior vorticity, but this process was found 
to give an unconverged solution. Finally, equation 
(I 7) was used in the present numerical scheme. 

(6) The following convergence criterion for the 
velocity components u and z: is used to judge whether 
or not another iteration is performed 

w .v 

E = ~~I(zl:~;- ’ -u;.;)/u:;:‘I/(MxN) < 5x IO_” 
1 I 

(18) 

where M and N are the number of divisions in the I’- 
and &directions, respectively. 

(7) By repeating steps (2)--(6), the unknowns II. ;., 
bt‘, < and 0 at the next axial step can be calculated. 
By numerical experiments, an optimal step siLc A: 
depends mainly on the magnitude of the Raylcigh 

number and also the Prandtl number. In the present 
study, the axial step size A: ranges from IO ’ to 10 ’ 

A cross-sectional mesh size (M x &) d 30 x 31 im, 
been found to yield an acceptable accuracy in Hong 
et cd. [4] and is used in the present study. The rcquircd 
computer time for solution of one set of Pr and h’tr 
is approximately 500 s for the casts of PI, = i and 
Ra < lo5 and 1500 s for the cases of Pr = 0.7 :md 
Ru < 3 x 10’ on a CDC cyber 170 system. 

RESULTS AND DISCUSSION 

The numerical result should be independent of the 
axial step size AZ. Therefore, a numerical experiment 
was made and the result is shown in Table 1 for 
the case of Pr = 5 and Ra = 10’. It is seen that the 
deviations of computed Nu with A: = 2.5 x IO- ’ and 
5 x IO ‘, at each axial position are less than 0.46%. 
This independency of the numerical result on AZ also 
reveals that the two-point backward difference for- 
mula employed in this numerical method, does not 
yield any appreciable error. 

The typical developing temperature profiles along 
the vertical symmetry lint (4 = 0 and 7~) are shown in 
Fig. 2 for the cases of Pr = 5 and 2, and Ra = IO’ at 

various axial positions. The buoyancy induced sec- 
ondary flow carries the heated fluid upward along the 
tube wall and downward along the symmetry plane. 
Therefore, the temperature at the upper wall (r = 1 .O. 
Q) = 0) is greater than that at the lower wall (r = 1 .O, 
4 = n). The temperature distributions along ri, = 0 
and n develop gradually from the almost symmetric 
case at I = I x IO- ’ where the secondark ilow is rather 
weak to the case at 3 = 1.25 x 10 2 in which a large 
temperature difference between the upper part (along 
&I = 0) and the lower part (along (i, = TC) is found due 
to the development of secondary flow. The cffcct ot‘ 
Prandtl number on developing temperature profiles 
can be also investigated by comparison of the results 
for Pr = 5 and 2 shown in Fig. 1. It is seen that the 
temperature distribution for PI = 2 almost coincides 
withthatofpr = 5atz < 2x IO ‘. hutat: = 6x IO ’ 
and 1 x 10 -’ the values of the curves 01‘ Pr = 2 arc 

higher than those of Pr =: 5 in the upper part (rb = 0) 
because the intensity of the secondary flow is stronger 
for the cases of Pr = 2 due to its higher Grashof 
number rather than that of Pr = 5. 

Figure 3 shows the development of axial velocity 
due to the buoyancy effect along the symmetry line 

(4 = 0 and n) for the cases of Pr _ 5 and 2 with 
Ra = 10’ at various axial positions. It is seen thal 
the axial velocity profiles are almost symmetric with 
respecttothecentrer=Oat:-1x10 'und2xlO ’ 
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Table I Nusselt number results obtained by a numerical 

x 10p3 to 6 x 10m3. The 
location of w = 0 moves upward and the w profiles 
become more uniform as z further increases to 
z = 5 x 10m2 where the velocity profile is fully 
developed. Comparison of the results of Pr = 2 and 
5, the effect of Prandtl number on the axial velocity 
due to buoyancy can be studied. One can observe that 
the curve of Pr = 2 at z = 1 x 10m3 almost coincides 
with that of Pr = 5, but the curve of Pr = 2 along 
(p = 0 becomes more up-skewed at z = 2 x 10p3 and, 
furthermore, the maximum absolute values of w for 

Pr = 2 are higher than those for Pr = 5 at 
z = 6 x 10e3 and I x IO-* due to the effect of stronger 
secondary flow with smaher Prandtl number. 

The natural convection effect on the flow charao 
teristic of the system is usually presented by the fric- 
tion factor ratio f Re/(f Re),, where subscript 0 
denotes the quantity for pure forced convection, Fig- 
ure 4 shows the values of f &/(f Re), vs dimen- 
sionless axial distance z for the cases of Pr = 0.1, 2 
and 5 with Rayleigh number as a parameter. When 
the Prandtl number is large, the axial velocity com- 
ponent w vanishes [4, 23-261. Therefore, the line of 

f W(fW, = 1.0 is the result for the case of Pr --) 
co. The variation of the local friction factor ratio 

along the channel axis shows that the natural con- 
vection effect is negligible up to a certain axial distance 
Zig depending mainly on the magnitude of the Grashof 
number and only shghtly on the Prandtl number. 
When the value of Pr is fmd, the axial distance z* is 
shorter with a high value of Ra, while the value of .&r 
is fixed, the axial distance z* is shorter with a higher 
value of Pr. Each curve in Fig. 4 branches out from 
the line off lie/( f Re), = 1 at the onset point z* and 
after reaching a maximum value, the curve appraaches 
rapidly to a limiting value when the velocity profile 
becomes fully developed. Furthermore, one can 
observe that the curves with higher Pr fall below 
that of lower Pr for a fixed value of Ra, A special 
trend is also seen for the curve of PrfRa) = &7(ld). 
By a detailed inspection of the transverse velocity 
fleId M and Y, multiple pair eddies appear at 
~=8xlO-~ N 1.4 x 10-’ but finally single pair eddies 
are again obtained at z 2 2 x lo-‘. For the z range 
over which multiple pair eddies appear, ,f Rp/(f’ RF)” 

FIG. 2. Temperature distribution along the vertical symmetry plane (# = 0 and n) for Pr = 5 and 2 
(A2 = 105). 
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FE. 4. Local friction factor vs z. 

is retarded as seen in the corresponding curve in Fig. 
4. Similar phenomena have been reported in refs. [37, 
391. However, an examination of this matter should 
consider stability analysis and is beyond the scope of 
the present work. 

The local Nusselt number behavior is of primary 
interest_ The effect of natural convection on the local 
NusseIt number for the thermal entrance Bow is 
shown in Fig. 5 for the cases of Pr = 0.7,2 and 5 with 
RU = 104, 3 x lo*, lo5 and 3.75 x 105. The exper- 
imental data using water by Petukhov and Polyakov 
f19J and the numerical results based on the large 
Prandtl number assumption (Pr -+ co> by Cheng and 

OU [24] are also reproduced for comparison. It is seen 
that the curves with lower values of Pr fall below those 
with higher values of Pr for a given Rayleigh number. 

This phenomenon can be also seen in the previous 
experimental i~v~tiga~ons using water and ethylene 
glycol in a glass tube by Morcos and Bergles [3] in the 
fully develoPed region, and the numerical results in 
ref. [36] in the thermal entrance region. One can also 
observe that the differences between the curves of 
Pr -+ x, and Pr = 0.7 increase as the values of RLZ 

increase. Although both Hong ef ai. [4] and Cbeng 
and Ou [24] suggested that the analytical model based 
on the large Prandtl number assumption is approxi- 
mately valid for water, the present results for Pr = 5 
show a better agreement for the cases of Ru = 
2.1875x lo4 and 7.14x 10”. The experimental data 
fail above the curve of Pr = 5 and Ra = 3.75 x 
105. This phenomenon can be also seen in the compar- 
ison of experimental data and numerical results in ref. 
[38] in square channels. It may be caused by the effect 
of fluid property variation with temperature [ 11. 

The variation of the local Nusselt number along the 
channel shows that the natural convection ef%ct is 
negligible up to a certain axial distance z* depending 
mainly on the magnitude of the Grashofnumber and 
also the Prandtl number. The values of z* are seen to 
decrease with the increase in Ra. For a fixed Rayleigh 
number, the axial distance z* decreases with the 
increase in Pr. The curve of the local Nusselt number is 
seen to deviate from that of the pure forced convection 
case. For the combined effect of entrance flow and 
natural convection, minimum and maximum local 
Nusselt numbers exist for some curves. Finally they 
approach asymptotic values when the temperature 
profiles become fully developed. 

Because of the lack of additional data for the 
entrance Row, the asymptotic friction factor and Nus- 
selt number results in the fully developed region are 
further compared with previous work. There were 
several different parameters chosen in the existing 
literature. After careful derivation, the relationships 
among the parameters are obtained as follows : 
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FIG. 5. Local Nusselt number vs z. 

(19) 

16Ra 
Ra* = Nu = 

4Pr Re Ra, 
Nu (20) 

where Re Ra, = p(2a)/v *g/?(aT/aZ)a*/vu is the par- 
ameter used in refs. [8, 221, Gr+ = gj@‘a3/kv2 is the 
parameter based on the rate of heat transfer per unit 
axial length and was used by Patankar et al. [37], and 
Ra* = gb(Tw - Tb)d3/va is the parameter based on the 
bulk temperature difference and was used by Morcos 
and Bergles [3]. In ref. [3] Rafm denoting the Rayleigh 
number Ra* evaluated at the film temperature was 
also used. For the convenience of presenting exper- 
imental data [3], the parameters Ra& and Ra* are 
used in Figs. 6 and 7, respectively. 

It can be seen in Fig. 6 that the present asymptotic 
values of f Re/(f Re), for Pr = 5 lie closely with the 
numerical result of Pr = 4.5 for uniform wall heat flux 
with zero heat conduction around the tube cir- 
cumference [20]. The experimental data of water in 
glass and metal tubes [3] fall above the present result 
of Pr = 5 and lie between the IC and ZC curves [20] 
due to finite tube wall conduction around the cir- 
cumference. The numerical results of Pr = 4 and 0.72 
in ref. [22] fall above the present curves of Pr = 5 and 
0.7, respectively, for the combination of the uniform 
axial heat flux and the uniform circumferential tem- 
perature thermal boundary condition. The numerical 
results of Patankar et al. [37] for the cases of Pr = 5 
and 0.7 with bottom heating condition also fall above 
the present results accordingly. In view of the uniform 
axial and circumferential wall heat flux thermal 
boundary condition used in the present investigation, 
the present results of Pr = 0.7 are reasonable. 

The asymptotic values of Nu in the present study 
are shown in Fig. 7. The results for Pr = 5 show a 
good agreement with the experimental data of water 
in a glass tube [3] and the ZC curve for Pr = 4.5 [20]. 
The IC prediction of Pr = 0.72 and 4 [22] lie above 
the present work of Pr = 0.7 and 5, respectively. The 
numerical results for Pr = 5 [371 with bottom heating 
condition predict higher values than the foregoing 
data. The correlation equation for air in a brass tube 
by Mori et al. [8] overestimates the data obtained by 
the present work for Pr = 0.7. By considering the 
trends of the data caused by the different boundary 
conditions, i.e. the use of a high conductivity wall 
material such as brass [8] and the zero wall conduction 
around the tube circumference used in this work, the 
present asymptotic Nusselt numbers for Pr = 0.7 are 
reasonable. 

CONCLUDING REMARKS 

(1) A relatively novel vorticity-velocity for- 
mulation of the NavierStokes equations and its 
numerical scheme are employed to study the natural 
convection effect on the Graetz problem in a hori- 
zontal tube without the aid of large Prandtl number 
assumptions. The values of the boundary vorticity on 
the tube wall are solved simultaneously with the 
velocity components u and v as shown in equation (17). 

(2) The secondary flow distorts the axial velocity 
and temperature profiles, and the locations of the 
maximum velocity and the minimum fluid tem- 
perature are moved toward the bottom tube wall. 
For a given Rayleigh number, the effect of decreasing 
Prandtl number is to increase the distortion of the 
axial velocity and temperature profiles due to the 
stronger secondary flow. 
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(3) Variations in both the locaf friction factor and 
Nusselt number show that the natural convection 
effect is negligible up to a certain axial distance, 
depending mainly on the magnitude of the Rayleigh 
number and to a lesser extent the Prandtl number. 
When the Prandtl number is held fixed, the axial dis- 
tance is shortened with the increase in Rttyleigh 
number. Likewise for a given Rayleigh number, the 
axial distance is also shortened with the increase in 
Prandtl number. Curves of the local friction factor 
ratio and local Nusselt number branch out From the 
curves for pure forced convection and, after z-e-aching 

a maximum value for f Rej(,j’ Re), and a minimum 
or also a maximum value for A%, the curves approach 
asymptotic values when the velocity and temperature 
profiles became fully developed. The curves of /lie/ 
(f R& and Ntd with higher values of Rn lie above 
that of the Iower value of &. For a given Rayleigh 
number, the curve of Nu for the case of Pr -+ m attains 
the highest value, but the curve off Re/(f Re), with 
a lower value of Pr lies above that with the higher 
value of Pr due to the strongor secondary flow. 

(4) The present results of Pr = 5 agree favorably 
with the availabIe experimental and numeric& dnta 
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both in the entrance and fully-developed flows. 
Because of a lack of corresponding data, the present 

18. 

ZC data of Pr = 0.7 are compared with the existing 
experimental and numerical results for the IC bound- 19. 

ary condition to find a reasonable comparison. 
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ANALYSE NUMERIQUE DU PROBLEME DE GRAETZ AVEC CONVECTION 
NATURELLE DANS UN TUBE CHAUD HORIZONTAL 

RBsum&Supposant un grand nombre de Prandtl, le probltme de Graetz, avec effet de convection naturellc 
dans un tube horizontal uniformement chauffe, est Ctudie numeriquement a l’aide d’une nouvelle mtthode 
vorticite&vitesse. Des variations du coefficient de frottement local et du nombre de Nusselt en fonction du 
nombre de Rayleigh sont montrees pour des nombres de Prandtl Pr = 5, 2 et 0,7. Compares a des donnees 
experimentales pour l’eau, les result,ats present&s pour Pr = 5 montrent un accord meilleur qu’avec Pr + 
\cc Les solutions asymptotiques pour r + co sont comparees avec les donnees analytiques et experimentales 

disponibles. On observe un accord raisonnable. 

NUMERISCHE UNTERSUCHUNG DES GRAETZ-PROBLEMS MIT UBERLAGERTER 
NATURLICHER KONVEKTION IN EINEM GLEICHFijRMIG BEHEIZTEN 

WAAGERECHTEN ROHR 

Zusammenfassung-Ohne Zuhilfenahme einer BeschrCnkung auf groge Prandtl-Zahlen wird das Graetz- 
Problem mit iiberlagerter natiirlicher Konektion in einem gleichformig beheizten waagerechten Rohr 
numerisch mit einem relativ neuartigen Wirbelfunktions-Geschwindigkeits-Verfahren untersucht. Der 
EinfluB der Rayleigh-Zahl auf die Brtlichen Werte von Wandschubspannung und Nusselt-Zahl wird fur 
die Prandtl-Zahlen Pr = 5, 2 und 0,7 gezeigt. Vergleicht man die hier vorgestellten Ergebnisse fur Pr = 5 
mit den verfiigbaren Versuchsdaten fur Wasser, so zeigt sich eine bessere iibereinstimmung als fiir Berech- 
nungen mit Pr + OL. Weiterhin werden die asymptotischen Liisungen fur z--t a mit vorhandenen 
analytischen turd experimentellen Werten verglichen. Dabei ergibt sich eine verhaltnismlbig gute iiber- 

einstimmung. 

‘IHCJIEHHbIti AHAJIM3 3A&49H FP3THA C Y9ETOM ECTECTBEHHOn KOHBEKHMM 
B OfiHOPOflHO HAFPETOti FOPM30HTAJIbHOfi TPYBE 

AHHo’raln-3aflara l-jDTL,a C y%TOM BJIBKHAK eCTeCTBeHHOti KOHBeKnWW a OnHOpOnHO Harl,eTOii rOpH- 

30HTa,IbHOti rpy6e pmaeTcn ‘WCJIeHHO B nel,‘?MeHHbIX CKOpOCTb-3aBHXpHHOCTb MeTOnOM, He ACnOJtb- 

3ylomEiM npn6nememin 6onbmeX ‘iACeJl npaHnTn% 3aBBCHMOCTb JlOKanbHOrO K03+#inBeHTa TlJeSUiSl U 

wcna HyccenbTa 0T wcna Psneri npriseneua anfl gricen Hpaunrna Pr = 5, 2 n 0.7. Cpamiexae pesynb- 

TaTOB, nO,‘y’,eHHb‘X WEa Pr = 5 C HMeK)nJIIMHCII OnbITHbIMll na”HbIMH jTJIK BOnbI nOKa3bIBaeT JIyYmee 

COOTBeTCTBAe, ‘IeM n,,ll C,,j’W,, Pr -+ CO. ikiMIITOTWIeCTCLie f.K?meHHn &“Il Z --t 00 CpaBHHBamTCn LIaJIee C 

CymeCTBymmUMli aHanUTHYeCKHMA A OnbITHbIMH AaHHbIMH. Haiineno BX XOpOmee COOTBeTCTBHe. 


